



### Effects of Bonneville Dam Spillway Operations on Fish Passage

Water Quality Team Briefing
12 June 2007



### Presentation Format



- Configuration and Operation Changes
- Effects of Spill on Adult Fish Passage
- Spill Passage Efficiency
- Survival



# Operational and Structural Changes



- 2000 Construction of new JBS at PH22001 Powerhouse priority shifted from PH1 to PH22002 Flow deflectors installed and/or modified
  - End bays (1-3 & 16-18) with deep deflectors (7'msl)
  - Middle bays (4 15) with shallow deflectors (14' msl)
- New spill patterns developed
  2003 Installation of the corner collector at PH2
  2003 Removed PH1 juvenile bypass screens
- 2005 Recalibrated spillway gate openings
- 2006-07 New Spill Operations Tested



# Adult Fish Passage Study 2002 & 2003



- 75 Kcfs daytime spill vs. gas cap spill
  - Counts
  - Passage times





## Adult Fish Passage Study – Fish Counts



- 2002: Higher passage (2:1 or greater ratio) during low spill (T = 3.03, P = 0.01).
- 2003: Higher passage during low spill (T = 3.02, P = 0.008).
- Much higher passage through Cascades Ladder during low spill (T = 5.15, P = 0.0001).



## Adult Fish Passage Study – Passage Times



#### From tailrace to:

|   |                | Low  | High | P     | n delay (hr) |
|---|----------------|------|------|-------|--------------|
| • | First approach | 0.29 | 0.47 | 0.007 | 17 4.32      |
| • | First entry    | 0.71 | 1.05 | 0.006 | 16 8.16      |
| • | Pass dam       | 1.27 | 1.86 | 0.006 | 16 14.16     |



### Adult Passage Study



- Fallback % during Hi spill greater than during Lo spill (8 vs. 2%), p < 0.04 based on condition at time of fallback.
- BON Spillway Model Evaluations found large backflows just below the spillway and heavy turbulence near fishway entrances when spill levels were at or above 120 kcfs.
- 2003 Spillway antennae show more fish enter spillway during Hi spill but no increase in entrance use.





# Adult Fish Passage Study Conclusions:

- High spill levels are detrimental to adult passage at Bonneville Dam (passage time and fallback).
- In 2006 region set limit on controlled spill of 100 kcfs based on this study.



# Effect of Percent Spill on Spill Passage Efficiency







# Spillway Survival



| Year | CH-1 | STHD | CH-0 |
|------|------|------|------|
| 2000 | 98%  |      |      |
| 2002 | 98%  |      |      |
| 2004 | 91%  | 98%  | 87%  |
| 2005 | 91%  | 96%  | 91%  |
| 2006 | 94%  |      | 86%  |







Deep Deflector (7' msl)



Shallow Deflector (14' msl)





### Spill Patterns



#### 75 KCFS SPILL







### 2006 and 2007 Studies

- 2006 Developed new spill patterns for spring and summer with 2' min. gate opening.
  - Spring: 100 Kcfs 24-hours per day
  - Summer: 75 Kcfs day/ gas cap night
- 2007 Revised '07 patterns to address TDG performance. Evaluating daytime survival, 14' vs. 7' deflectors.







- Spill above 100 Kcfs during the daytime delays adult migrants and increases their fallback rates,
- Spill passage efficiency is approximately 1:1,
- Survival of juvenile fish that pass through the spillway is low for Chinook, particularly during the daytime, under lower Q, and through bays with shallow deflectors.



### Path Forward



- Evaluate direct effects of passing specific locations and/or operations on smolt injury and mortality
  - Deflector elevation?
  - Gate opening?
  - Erosion?
- System-wide spillway injury study
  - Identify spillway conditions that result in injury
  - Develop spillway design criteria for safe fish passage